On the spectral theory and dynamics of asymptotically hyperbolic manifolds

نویسنده

  • Julie ROWLETT
چکیده

— We present a brief survey of the spectral theory and dynamics of infinite volume asymptotically hyperbolic manifolds. Beginning with their geometry and examples, we proceed to their spectral and scattering theories, dynamics, and the physical description of their quantum and classical mechanics. We conclude with a discussion of recent results, ideas, and conjectures. Résumé. — Cet article est une présentation rapide de la théorie spectrale et de la dynamique des variétés asymptotiquement hyperboliques à volume infini. Nous commençons par leur géométrie et quelques exemples, nous poursuivons en rappelant leur théorie spectrale, puis continuons sur des développements récents de leur dynamique. Nous concluons par une discussion des résultats qui démontrent un rapport entre leurs mécaniques quantiques et classiques et enfin, nous offrons quelques idées et conjectures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resonance asymptotics for asymptotically hyperbolic manifolds with warped-product ends

Resonance asymptotics for asymptotically hyperbolic manifolds with warped-product ends By Pascal Philipp We study the spectral theory of asymptotically hyperbolic manifolds with ends of warped-product type. Our main result is an upper bound on the resonance counting function, with a geometric constant expressed in terms of the respective Weyl constants for the core of the manifold and the base ...

متن کامل

Stable manifolds of saddle equilibria for pendulum dynamics on S2 and SO(3)

Global nonlinear dynamics of various classes of closed loop attitude control systems have been studied in recent years [1]. Closely related results on attitude control of a spherical pendulum (with attitude an element of the twosphere S2) and of a 3D pendulum (with attitude an element of the special orthogonal group SO(3)) are given in [2], [3]. These publications address the global closed dyna...

متن کامل

Dynamics of Asymptotically Hyperbolic Manifolds

We prove a dynamical wave trace formula for asymptotically hyperbolic (n+1) dimensional manifolds with negative (but not necessarily constant) sectional curvatures which equates the renormalized wave trace to the lengths of closed geodesics. This result generalizes the classical theorem of Duistermaat-Guillemin for compact manifolds and the results of GuillopéZworski, Perry, and Guillarmou-Naud...

متن کامل

Equipartition of Energy in Geometric Scattering Theory

In this note, we use an elementary argument to show that the existence and unitarity of radiation fields implies asymptotic partition of energy for the corresponding wave equation. This argument establishes the equipartition of energy for the wave equation on scattering manifolds, asymptotically hyperbolic manifolds, asymptotically complex hyperbolic manifolds, and the Schwarzschild spacetime. ...

متن کامل

Geometric Scattering Theory and Applications

Classical scattering theory, by which we mean the scattering of acoustic and electromagnetic waves and quantum particles, is a very old discipline with roots in mathematical physics. It has also become an important part of the modern theory of linear partial differential equations. Spectral geometry is a slightly more recent subject, the goal of which is to understand the connections between th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011